
 IDENTIFICATION DIVISION.

 PROGRAM-ID. ANNUITY.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *COMPUTER DIED...NEED TO WORK ON VALIDATING THE INPUT 10/03/2025

 01 TOTAL-LOAN PIC 9(9)V99 VALUE 100000.

 01 INTEREST-RATE PIC 999V99 VALUE 0.05. *> INTEREST OF 5%

 01 INTEREST-RATEP PIC 999V99 VALUE ZERO.

 01 MONTHS PIC 999 VALUE ZERO.

 01 YEARS PIC 999 VALUE ZERO.

 01 MONTHLY-PAYMENT PIC 9(9)V99 .

 01 COUNTER PIC 999 VALUE ZERO.

 ***** INPUT VARIABLES TO TEST IF VALID***************

 01 TOTAL-LOAN-INPUT PIC X(15) VALUE SPACE.

 01 INTEREST-RATE-INPUT PIC X(15) VALUE SPACE.

 01 INTEREST-RATEP-INPUT PIC X(15) VALUE SPACE.

 01 YEAR-INPUT PIC X(15) VALUE SPACE.

 01 VALID-INPUT PIC X(01) VALUE 'N'.

 88 VALID-INPUT-RECEIVED VALUE 'Y'.

 88 INVALID-INPUT-RECEIVED VALUE 'N'.

 01 TEMP-VARIABLE-STORAGE.

 05 TEST-INPUT PIC X(15) VALUE SPACE.

 ******DISPLAY VARIABLES***************

 01 DISPLAY-TOTAL-LOAN PIC Z(9).99.

 01 DISPLAY-INTEREST-RATE PIC ZZZ.99.

 01 DISPLAY-INTEREST-RATEP PIC ZZZ.

 01 DISPLAY-INTEREST-PERCENT PIC X(8).

 01 DISPLAY-MONTHLY-PAYMENT PIC Z(9).99.

 01 DISPLAY-YEAR-INPUT PIC XXX.

 PROCEDURE DIVISION.

 ACCEPTING THE USER RESPONSE FOR VARIABLES******

 DISPLAY "WHATS THE TOTAL LOAN?".

 * DOES NOT WORK FOR DECIMAL POINT INPUTS ATM (E.X: 100.00)

 * PERFORM WITH TEST AFTER UNTIL VALID-INPUT-RECEIVED

 PERFORM 000-VALIDATE-INPUT.

 IF VALID-INPUT-RECEIVED THEN

 COMPUTE TOTAL-LOAN = FUNCTION NUMVAL(TOTAL-LOAN-

 - INPUT)

 MOVE TOTAL-LOAN TO DISPLAY-TOTAL-LOAN

 END-IF.

 DISPLAY "WHATS THE INTEREST RATE(E.X: 0.05)".

 PERFORM 001-VALIDATE-INTEREST-INPUT.

 IF VALID-INPUT-RECEIVED THEN

 COMPUTE INTEREST-RATE = FUNCTION NUMVAL(INTEREST-RATE-

 - INPUT)

 MOVE INTEREST-RATE TO DISPLAY-INTEREST-RATE

 END-IF.

 MOVE INTEREST-RATE TO DISPLAY-INTEREST-RATE.

 DISPLAY "ENTER THE YEARS:".

 PERFORM 002-VALIDATE-YEAR-INPUT.

 IF VALID-INPUT-RECEIVED THEN

 COMPUTE YEARS = FUNCTION NUMVAL-C(YEAR-INPUT)

 MOVE YEAR-INPUT TO DISPLAY-YEAR-INPUT

 END-IF.

 MOVE INTEREST-RATEP TO DISPLAY-INTEREST-RATEP.

 MOVE DISPLAY-INTEREST-RATEP TO DISPLAY-

 - INTEREST-PERCENT.

 *****DISPLAYING THE INPUT VALUES TO ENSURE ITS ACCEPTED*****

 COMPUTE INTEREST-RATEP = INTEREST-RATE * 100.

 MOVE INTEREST-RATEP TO DISPLAY-INTEREST-RATEP.

 DISPLAY 'TOTAL-LOAN: ' DISPLAY-TOTAL-LOAN ' USD - INTEREST-

 - 'RATE: ' DISPLAY-INTEREST-RATEP '%'.

 DISPLAY ' Y M AMOUNT '

 DISPLAY '--- --- -------------'

 PERFORM 003-CALCULATE-ANNUITY.

 * ACCEPT OMITTED

 GOBACK.

 *************EVALUATE INPUT PARAGRAPH*************

 000-VALIDATE-INPUT.

 INITIALIZE VALID-INPUT.

 PERFORM WITH TEST AFTER UNTIL VALID-INPUT-RECEIVED

 ACCEPT TOTAL-LOAN-INPUT

 * MOVE FUNCTION NUMVAL-C(TOTAL-LOAN-INPUT) TO TEST-INPUT

 IF FUNCTION TEST-NUMVAL-C(TOTAL-LOAN-INPUT) = 0 THEN

 SET VALID-INPUT-RECEIVED TO TRUE

 ELSE

 SET INVALID-INPUT-RECEIVED TO TRUE

 DISPLAY "THIS IS NOT A NUMBER/VALID INPUT"

 END-IF

 END-PERFORM.

 001-VALIDATE-INTEREST-INPUT.

 INITIALIZE VALID-INPUT.

 PERFORM WITH TEST AFTER UNTIL VALID-INPUT-RECEIVED

 ACCEPT INTEREST-RATE-INPUT

 * MOVE FUNCTION NUMVAL-C(TOTAL-LOAN-INPUT) TO TEST-INPUT

 IF FUNCTION TEST-NUMVAL-C(INTEREST-RATE-INPUT) = 0 THEN

 SET VALID-INPUT-RECEIVED TO TRUE

 ELSE

 SET INVALID-INPUT-RECEIVED TO TRUE

 DISPLAY "THIS IS NOT A NUMBER/VALID INPUT"

 END-IF

 END-PERFORM.

 002-VALIDATE-YEAR-INPUT.

 INITIALIZE VALID-INPUT.

 PERFORM WITH TEST AFTER UNTIL VALID-INPUT-RECEIVED

 ACCEPT YEAR-INPUT

 MOVE INTEREST-RATE-INPUT TO INTEREST-RATEP-INPUT

 * MOVE FUNCTION NUMVAL-C(TOTAL-LOAN-INPUT) TO TEST-INPUT

 IF FUNCTION TEST-NUMVAL-C(YEAR-INPUT) = 0 THEN

 SET VALID-INPUT-RECEIVED TO TRUE

 DISPLAY "YEAR IS VALID"

 ELSE

 SET INVALID-INPUT-RECEIVED TO TRUE

 DISPLAY "THIS IS NOT A NUMBER/VALID INPUT"

 END-IF

 END-PERFORM.

 003-CALCULATE-ANNUITY.

 COMPUTE YEARS = FUNCTION NUMVAL-C(DISPLAY-YEAR-INPUT).

 PERFORM VARYING COUNTER FROM 1 BY 1 UNTIL COUNTER > YEARS

 COMPUTE MONTHS = COUNTER * 12

 COMPUTE MONTHLY-PAYMENT = TOTAL-LOAN * FUNCTION ANNUITY

 - ((INTEREST-RATE / 12), MONTHS)

 MOVE MONTHLY-PAYMENT TO DISPLAY-MONTHLY-PAYMENT

 DISPLAY COUNTER ' ' MONTHS ' '

 - DISPLAY-MONTHLY-PAYMENT " USD"

 END-PERFORM.

THIS IS THE RESULT AFTER RUNNING THE ANNUITY PROGRAM

Below is an image showing the error handling. It will keep the user in a loop until they

input a valid input.

The hardest part about this project was the logic behind accepting a valid input from the

user. I was stuck on it for a few days until I finally figured out how the PERFORM and

NUMVAL works. I resorted to using documentation for pretty much the entire project

especially when it came to error checking. Such as the use of “Numval-C” and the use

of more than one paragraph to call throughout the program while making the program

more readable. I had a lot of fun doing this project despite wanting to rip my hair out

occasionally. I learned good practice with labeling separate paragraphs, such as naming

them 000 and 001. This helps as the program gets more complicated and lines start

looking like hieroglyphics. It also helps me look for the source of bugs/errors in the

program during testing.

